84000+60x=200x-0.03125x^2

Simple and best practice solution for 84000+60x=200x-0.03125x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 84000+60x=200x-0.03125x^2 equation:



84000+60x=200x-0.03125x^2
We move all terms to the left:
84000+60x-(200x-0.03125x^2)=0
We get rid of parentheses
0.03125x^2-200x+60x+84000=0
We add all the numbers together, and all the variables
0.03125x^2-140x+84000=0
a = 0.03125; b = -140; c = +84000;
Δ = b2-4ac
Δ = -1402-4·0.03125·84000
Δ = 9100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9100}=\sqrt{100*91}=\sqrt{100}*\sqrt{91}=10\sqrt{91}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-10\sqrt{91}}{2*0.03125}=\frac{140-10\sqrt{91}}{0.0625} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+10\sqrt{91}}{2*0.03125}=\frac{140+10\sqrt{91}}{0.0625} $

See similar equations:

| 10x-3=2x-21 | | 98+7x=180 | | -4(x)=x^2-x+20 | | 1.2(a+3.5)=4.8 | | 23+8=-(2x-12)+10(x+10) | | t(8)=5 | | -4×+2(5x-6)=-3x-39 | | 2+3(2x-7)=9-2(3x+4) | | x+x/8=27 | | 0.54÷y=0.6 | | -45=-3y=30 | | -24(t)=t/2 | | -24(t)=-24 | | 7(a-2)=-77 | | 4y=-56 | | -19(n)=7-4n | | (6x-5)+(x+9)+(4x)=180 | | 14x-2=85 | | (0.3x+1.4)−1.83=−24.43 | | (3x+43)+(5x+7)+90=180 | | 2t^2-20t+48=0 | | 14x2=95 | | 14x-2=95 | | 15-8+2x=60 | | c−157=22 | | X+2x-14=50 | | –23u=–138 | | 5j=2j-9 | | -(z+10)=-15 | | 991=u+159 | | 3=x2 | | -5x(-x-1)+4x=49 |

Equations solver categories